Black box model: Difference between revisions

From CEOpedia | Management online
No edit summary
No edit summary
Line 1: Line 1:
'''A black box model''' represents the relationship between system inputs and outputs. This model is used in different contexts and has different meanings. Commonly '''used in science, computer science, and engineering,''' black-box models are devices that describe the functional relationships between system inputs and outputs. In economics, a black box model is a financial model in which computer programs have been developed to transform various investment data into useful investment strategies. A '''black-in-black-box model refers''' to the lack of access to the inner workings of the model's function parameters. A white-box model is the opposite of a black box model, as internal components can be accessed and inspected(Vladyslava Klochko, 2022).
'''A black box model''' represents the relationship between system inputs and outputs. This model is used in different contexts and has different meanings. Commonly '''used in science, computer science, and engineering,''' black-box models are devices that describe the functional relationships between system inputs and outputs. In economics, a black box model is a financial model in which computer programs have been developed to transform various investment data into useful investment strategies. A '''black-in-black-box model refers''' to the lack of access to the inner workings of the model's function parameters. A white-box model is the opposite of a black box model, as internal components can be accessed and inspected.


The increase in technology is causing a proliferation of black box models in many professions, which is adding to the mystique of these models. Many professionals are hesitant to use black box models in their work because they are unsure of their potential consequences. Many people in many professions are wary of black box models, which are models that show how an event or situation will play out.  As an example, there can be an article on this topic in one of the cardiologists' articles: ''"Black box is shorthand for models that are sufficiently complex that they are not straightforwardly interpretable to humans."''
The increase in technology is causing a proliferation of black box models in many professions, which is adding to the mystique of these models. Many professionals are hesitant to use black box models in their work because they are unsure of their potential consequences. Many people in many professions are wary of black box models, which are models that show how an event or situation will play out.  As an example, there can be an article on this topic in one of the cardiologists' articles: ''"Black box is shorthand for models that are sufficiently complex that they are not straightforwardly interpretable to humans (Cohen, N. (2021))."''


==Understanding Black box model==
==Understanding Black box model==
Line 9: Line 9:
The proliferation of black-box methods in financial markets has raised many concerns. The black box model is not necessarily dangerous, but it raises administrative and ethical issues. Investment advisors using black box technology may mask the actual risks of the assets they offer under the guise of protecting proprietary technology. As a result, investors and regulators do not know what facts are needed to accurately assess perceived risks. Whether the model can be used is still a matter of debate.  
The proliferation of black-box methods in financial markets has raised many concerns. The black box model is not necessarily dangerous, but it raises administrative and ethical issues. Investment advisors using black box technology may mask the actual risks of the assets they offer under the guise of protecting proprietary technology. As a result, investors and regulators do not know what facts are needed to accurately assess perceived risks. Whether the model can be used is still a matter of debate.  


The use of black box models for investment analysis, usually based on whether financial markets are rising or falling, has become less common in recent years. During periods of volatile times in financial markets, black box strategies are preferred due to their potentially disruptive nature. The level of risk may not be clear until extreme costs become apparent. Advances in '''computing power, big data applications, artificial intelligence, and machine learning capabilities''' use advanced numerical techniques to further magnify the mystery surrounding black box models(Vladyslava Klochko, 2022).
The use of black box models for investment analysis, usually based on whether financial markets are rising or falling, has become less common in recent years. During periods of volatile times in financial markets, black box strategies are preferred due to their potentially disruptive nature. The level of risk may not be clear until extreme costs become apparent. Advances in '''computing power, big data applications, artificial intelligence, and machine learning capabilities''' use advanced numerical techniques to further magnify the mystery surrounding black box models.


Hedge funds and the world's largest investment managers regularly use black box models to guide their investment strategies. A black box model used in financial markets is software that analyzes market data and creates trading strategies based on that analysis. Black box users can understand the result, but not the logic behind it. In fact, when building models using machine learning techniques, the inputs are too complex for the human brain to interpret.  
Hedge funds and the world's largest investment managers regularly use black box models to guide their investment strategies. A black box model used in financial markets is software that analyzes market data and creates trading strategies based on that analysis. Black box users can understand the result, but not the logic behind it. In fact, when building models using machine learning techniques, the inputs are too complex for the human brain to interpret.  
Line 18: Line 18:
* ''Weaker and white box''; simpler models like direct retrogression and decision trees on the other hand give lower prophetic capacity and aren't always able of modelling the essential complexity of the dataset (i.e. point relations). They're still significantly easier to explain and interpret.  
* ''Weaker and white box''; simpler models like direct retrogression and decision trees on the other hand give lower prophetic capacity and aren't always able of modelling the essential complexity of the dataset (i.e. point relations). They're still significantly easier to explain and interpret.  


===The Black Box Model Over the Years===
==The Black Box Model Over the Years==
The use of the black box model in the financial markets is largely dependent on the request conditions and the market cycle. For ages of high volatility in the request, black box models can bring further troubles and the ultimate decimation of the request. Samples of how black box strategies beget destruction are the flash crash of 2015, the portfolio insurance occasion of 1987, and the long-term capital operation implosion of 1998, among others. Given that black box strategies carry essential threats, several enterprises have been raised against their use. Still, technological advancement, machine literacy, data wisdom and other affiliated fields have led to the complication of the black box models. Presently, institution investment directors and barricaded finances still use these strategies when handling complicated investments(Vladyslava Klochko, 2022).  
The use of the black box model in the financial markets is largely dependent on the request conditions and the market cycle. For ages of high volatility in the request, black box models can bring further troubles and the ultimate decimation of the request. Samples of how black box strategies beget destruction are the flash crash of 2015, the portfolio insurance occasion of 1987, and the long-term capital operation implosion of 1998, among others. Given that black box strategies carry essential threats, several enterprises have been raised against their use. Still, technological advancement, machine literacy, data wisdom and other affiliated fields have led to the complication of the black box models. Presently, institution investment directors and barricaded finances still use these strategies when handling complicated investments.  


===References===
==References==
* Cohen, N., Snow, D.,and Szpruch, L. (2021). [https://arxiv.org/pdf/2102.04757.pdf ''Black box model risk in finance'']
* Cohen, N., Snow, D.,and Szpruch, L.(2021). ''Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology'', 38(2), 204-213.
* Day Trader Review. (2022). [https://daytradereview.com/black-box-stocks-review/ ''Black Box Stocks Review: How Does This Trading Platform Rate'']
* O. Loyola-González.(2022). ''Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view.''  
* Science Direct. (2022). [https://www.sciencedirect.com/science/article/pii/S0828282X21007030 ''Opening the Black Box :The Promise and Limitations of Explainable Machine Learning in Cardiology'']
* Turner, R.(2015). ''A Model Explanation System''.
* Sciforce. (2020). [https://medium.com/sciforce/introduction-to-the-white-box-ai-the-concept-of-interpretability-5a31e1058611 ''Introduction to the White Box AI: the Concept of Interpretability'']
* Turner, R.(2015). [https://www.blackboxworkshop.org/pdf/Turner2015_MES.pdf ''A Model Explanation System'']


[[Category:Financial management]]
[[Category:Financial management]]
{{a|Vladyslava Klochko}}.
{{a|Vladyslava Klochko}}.

Revision as of 19:07, 23 November 2022

A black box model represents the relationship between system inputs and outputs. This model is used in different contexts and has different meanings. Commonly used in science, computer science, and engineering, black-box models are devices that describe the functional relationships between system inputs and outputs. In economics, a black box model is a financial model in which computer programs have been developed to transform various investment data into useful investment strategies. A black-in-black-box model refers to the lack of access to the inner workings of the model's function parameters. A white-box model is the opposite of a black box model, as internal components can be accessed and inspected.

The increase in technology is causing a proliferation of black box models in many professions, which is adding to the mystique of these models. Many professionals are hesitant to use black box models in their work because they are unsure of their potential consequences. Many people in many professions are wary of black box models, which are models that show how an event or situation will play out. As an example, there can be an article on this topic in one of the cardiologists' articles: "Black box is shorthand for models that are sufficiently complex that they are not straightforwardly interpretable to humans (Cohen, N. (2021))."

Understanding Black box model

Before their widespread use in financial markets, black box models were used in science, computer science, and engineering to describe the relationship between system inputs and outputs. In financial markets, the black box model is concerned with the investment decision-making process. This model could be an algorithm, a transistor or a memory, or a human brain. However, the use of black box models in financial markets hides the real risks of investing in software and computer technology, so investors question the systemic risk this model brings to the market. The black box model is also used as a model to explain consumer stimulus-response patterns in consumer behavior theory.

The Black Box Model in Finance

The proliferation of black-box methods in financial markets has raised many concerns. The black box model is not necessarily dangerous, but it raises administrative and ethical issues. Investment advisors using black box technology may mask the actual risks of the assets they offer under the guise of protecting proprietary technology. As a result, investors and regulators do not know what facts are needed to accurately assess perceived risks. Whether the model can be used is still a matter of debate.

The use of black box models for investment analysis, usually based on whether financial markets are rising or falling, has become less common in recent years. During periods of volatile times in financial markets, black box strategies are preferred due to their potentially disruptive nature. The level of risk may not be clear until extreme costs become apparent. Advances in computing power, big data applications, artificial intelligence, and machine learning capabilities use advanced numerical techniques to further magnify the mystery surrounding black box models.

Hedge funds and the world's largest investment managers regularly use black box models to guide their investment strategies. A black box model used in financial markets is software that analyzes market data and creates trading strategies based on that analysis. Black box users can understand the result, but not the logic behind it. In fact, when building models using machine learning techniques, the inputs are too complex for the human brain to interpret.

What Is the Black Box Model vs. the White Box Model?

The utmost machine literacy systems bear the capability to explain to stakeholders why specific properties are made. When choosing an applicable machine literacy model, we frequently suppose about dickers between accuracy and interoperability:

  • Accurate and black box: models like neural networks, grade-boosting models or complicated ensembles often give great delicacy. The inner workings of these models are harder to understand, and they don’t estimate the significance of each point on the model prognoses, nor is it easy to understand how the different features interact.
  • Weaker and white box; simpler models like direct retrogression and decision trees on the other hand give lower prophetic capacity and aren't always able of modelling the essential complexity of the dataset (i.e. point relations). They're still significantly easier to explain and interpret.

The Black Box Model Over the Years

The use of the black box model in the financial markets is largely dependent on the request conditions and the market cycle. For ages of high volatility in the request, black box models can bring further troubles and the ultimate decimation of the request. Samples of how black box strategies beget destruction are the flash crash of 2015, the portfolio insurance occasion of 1987, and the long-term capital operation implosion of 1998, among others. Given that black box strategies carry essential threats, several enterprises have been raised against their use. Still, technological advancement, machine literacy, data wisdom and other affiliated fields have led to the complication of the black box models. Presently, institution investment directors and barricaded finances still use these strategies when handling complicated investments.

References

  • Cohen, N., Snow, D.,and Szpruch, L.(2021). Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology, 38(2), 204-213.
  • O. Loyola-González.(2022). Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view.
  • Turner, R.(2015). A Model Explanation System.

Author: Vladyslava Klochko

.