Help:Formulas: Difference between revisions

From CEOpedia | Management online
(Created page with "<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math> <math>a^2 + b^2 = c^2</math> <math>E = mc^2</math> <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nab...")
 
mNo edit summary
 
Line 1: Line 1:
The quadratic formula:
<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math>
<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math>


The Pythagorean theorem:
<math>a^2 + b^2 = c^2</math>
<math>a^2 + b^2 = c^2</math>


Einstein's famous equation of mass-energy equivalence:
<math>E = mc^2</math>
<math>E = mc^2</math>


The Navier-Stokes equation for fluid dynamics:
<math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}</math>
<math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}</math>


The Schrödinger equation for quantum mechanics:
<math>i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi</math>
<math>i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi</math>


Maxwell's equations for electromagnetism:
<math>\begin{aligned}
<math>\begin{aligned}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\

Latest revision as of 08:35, 22 January 2023

The quadratic formula:

The Pythagorean theorem:

Einstein's famous equation of mass-energy equivalence:

The Navier-Stokes equation for fluid dynamics:

The Schrödinger equation for quantum mechanics:

Maxwell's equations for electromagnetism: