Help:Formulas: Difference between revisions
From CEOpedia | Management online
(Created page with "<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math> <math>a^2 + b^2 = c^2</math> <math>E = mc^2</math> <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nab...") |
mNo edit summary |
||
Line 1: | Line 1: | ||
The quadratic formula: | |||
<math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math> | <math>x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}</math> | ||
The Pythagorean theorem: | |||
<math>a^2 + b^2 = c^2</math> | <math>a^2 + b^2 = c^2</math> | ||
Einstein's famous equation of mass-energy equivalence: | |||
<math>E = mc^2</math> | <math>E = mc^2</math> | ||
The Navier-Stokes equation for fluid dynamics: | |||
<math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}</math> | <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}</math> | ||
The Schrödinger equation for quantum mechanics: | |||
<math>i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi</math> | <math>i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi</math> | ||
Maxwell's equations for electromagnetism: | |||
<math>\begin{aligned} | <math>\begin{aligned} | ||
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\ | \nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\ |
Latest revision as of 08:35, 22 January 2023
The quadratic formula:
The Pythagorean theorem:
Einstein's famous equation of mass-energy equivalence:
The Navier-Stokes equation for fluid dynamics:
The Schrödinger equation for quantum mechanics:
Maxwell's equations for electromagnetism: